大家好,今天给各位分享方差分析法的一些知识,其中也会对方差分析法例题进行解释,文章篇幅可能偏长,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在就马上开始吧!
F值是两个均方的比值[效应项/误差项],不可能出现负值。F值越大[与给定显著水平的标准F值相比较]说明处理之间效果[差异]越明显,误差项越小说明试验精度越高。
扩展资料:
方差分析,又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:
(1)实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。
(2)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作SSw,组内自由度dfw。
总偏差平方和SSt=SSb+SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw=n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
方差是衡量源数据和期望值相差的度量值。
1、设C是常数,则D(C)=0
2、设X是随机变量,C是常数,则有
3、设X与Y是两个随机变量,则
其中协方差特别的,当X,Y是两个不相关的随机变量则
此性质可以推广到有限多个两两不相关的随机变量之和的情况。
4、D(X)=0的充分必要条件是X以概率1取常数E(X),即
(当且仅当X取常数值E(X)时的概率为1时,D(X)=0。)
注:不能得出X恒等于常数,当x是连续的时候X可以在任意有限个点取不等于常数c的值。
参考资料:百度百科-方差分析
方差分析(AnalysisofVariance,简称ANOVA)为数据分析中常见的统计模型,主要为探讨连续型资料型态之因变量与类别型资料型态之自变量的关系。当自变项的因子中包含等于或超过三个类别情况下,检定其各类别间平均数是否相等的统计模式,广义上可将T检定中方差相等(Equalityofvariance)的合并T检定(PooledT-test)视为是方差分析的一种,基于T检定为分析两组平均数是否相等,并且采
用相同的计算概念,而实际上当方差分析套用在合并T检定的分析上时,产生的F值则会等于T检定的平方项
方差分析法是所获得的数据按某些项目分类后,再分析各组数据之间有无差异的方法。例如给植物施用几种肥料,调查分析作物产量在不同肥料处理之间有无真正的差异时一般常采用方差分析法。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。
关于本次方差分析法和方差分析法例题的问题分享到这里就结束了,如果解决了您的问题,我们非常高兴。
留言与评论(共有 0 条评论) |